Analgesics and Sedatives in Critically Ill Newborns and Infants: The Impact on Long-Term Neurodevelopment

R.M. Schiller, MSc1, K. Allegaert, MD, PhD1, Maayke Hunfeld, MD1, G.E. van den Bosch, MD, PhD1, John van den Anker, MD, PhD1,2,3, and D. Tibboel, MD, PhD1

Abstract
Inadequate pain and/or stress management in preterm- and term-born infants has been associated with increased morbidity and even mortality. However, exposure to analgosedatives during early infancy may also be one of the risk factors for subsequent neurodevelopmental impairment, at least in animal studies. Because infants admitted to neonatal or pediatric intensive care units may receive high amounts of these drugs for prolonged periods of time and the majority of these infants nowadays survive to discharge, this is of major concern. A balanced approach that incorporates the assessment and quantification of both wanted effects as well as unwanted side effects is therefore needed. In this article, the optimal dose determination of commonly used analgesic drugs as well as their potential long-term effects on the developing human brain and neuropsychological functioning are reviewed.

Keywords
infant, neurodevelopmental disorders, neuropsychology, newborn, sedatives and analgesia

Over the past decades, phenomena such as pain, stress, and anxiety/agitation have intrigued a variety of clinicians and scientists. The paradigm that immaturity protects neonates from pain and its negative effects was questioned years ago by Anand et al.1 who demonstrated that untreated perioperative pain was associated with increased morbidity and even mortality. These negative effects have been described in greater detail in recent reviews, showing that insufficient pain management in (pre)term infants during painful interventions alters physiological responses, pain thresholds, and pain- or stress-related behavior.1–3 However, evidence showing a link between exposure to analgosedatives (analgesics and sedatives) in early infancy and subsequent neurodevelopmental impairment is accumulating as well.4–6 As the majority of infants admitted to neonatal or pediatric intensive care units now survive to discharge, this is of major concern. Although there may be long-term effects of anesthetic agents on the brain as well, this has been extensively described and reviewed in the past few years2,9–13 due to a recent Food and Drug Administration warning about its use in children younger than 3 years,14 and is therefore beyond the scope of the current review.2,9–13

The balance between adequate pain management and the risk of long-term neurodevelopmental impairments reads like a catch-22, but at least indicates that a balanced approach that incorporates assessing and quantifying both wanted effects as well as unwanted side effects is needed. To avoid both pain and stress with all the negative consequences as well as over-exposure (too much or too long) to analgosedatives, health care providers should select the most appropriate intervention (either pharmacologic or nonpharmacologic) based on the best available evidence for a given indication, with adjustments to reach the most effective and shortest exposure.15 Over the past 5 years, a number of guidelines have been published and trials have been performed to find the optimal dosage for analgesic drugs.16–20 However, we need to be aware that the level of evidence is, unfortunately, still limited. Data on maturational pharmacokinetics (PK) are a crucial yet first step of a drug development program, especially in

1Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
2Division of Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel, Switzerland
3Division of Clinical Pharmacology, Children’s National Health System, Washington, DC, USA

Submitted for publication 19 December 2017; accepted 23 March 2018.

Corresponding Author:
Dick Tibboel, MD, PhD. Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Room SK-3286, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
Email: d.tibboel@erasmusmc.nl
neonates and young infants. Therapeutic dose-finding studies, even for commonly used drugs, are needed to come up with a valid study design in neonates and infants before comparative phase 3 efficacy and safety trials can be conducted.

In pain management of infants admitted to the neonatal or pediatric intensive care unit, the ultimate goal is to achieve adequate pain management with minimal short- and long-term side effects. In reaching this goal, it is imperative to also increase our understanding of how exposure to sedatives and analgesia may affect the developing brain. Based on the existing literature combined with our own research, we will summarize the present knowledge and level of evidence of a number of commonly used analgesedative drugs that serve as model drugs and their potential long-term effects on the developing brain and neuropsychological functioning in humans.

Dose Determination of Common Analgesedative Drugs

Analgesics

Morphine. Morphine is the most commonly used intravenous opioid to provide potent analgesia in neonates, infants, and children. However, age-related differences in both PK and pharmacodynamic responses during development pose challenges for selection of an appropriate dose. As sensitivity of the central nervous system to morphine is increased in neonates, a lower initial dose of morphine is recommended, which is then adjusted based on individual responses. In addition, the elimination half-life of morphine is more than twice as long as that observed in adults (6–12 hours in neonates vs 3–4 hours in adults), due to immaturity of the neonatal hepatic drug metabolizing enzyme system. Morphine clearance increases in accordance with the maturation of the glomerular filtration rate and by 1 year of age, the ratio of plasma to cerebral spinal fluid concentration is comparable to that of adults. A number of studies have described the optimal dosage of morphine. Four studies included only neonates and four studies consisted of data solely based on children (ranging from 10 to 40 μg/kg). The use of morphine, especially in the preterm, is still a matter for debate. In the cohort of Simons et al. preterm neonates in need of mechanical ventilation and with a median gestational age of 29 weeks, received either morphine 10 μg/kg per hour or placebo, and additional morphine in case of pain or distress. In the NEOPAIN study of Anand et al. ventilated preterm born children received placebo or morphine as well, but in different dosages. The doses of morphine used in this study were based on gestational age; children born at 23 to 26 weeks of gestation received 10 μg/kg per hour; 27 to 29 weeks received 20 μg/kg per hour; and 30 to 32 weeks received 30 μg/kg per hour. From these 2 randomized controlled trials it was concluded that the routine use of intravenous morphine is not beneficial in the short term in ventilated preterm newborns.

Fentanyl. Fentanyl is commonly used due to its high lipid solubility and potency. Its half-life time is short compared to morphine (ranging between 188 and 570 minutes in infants and neonates vs 219 minutes in adults), but longer than its derivatives sufentanil, alfentanil, and remifentanil. In the search for optimal dosing, using population PK approaches, large variations were observed in the dose of fentanyl used across studies (ranging between 1 and 5 μg/kg). In 4 studies, neonates were included (range, 1–71 days) with weight ranging between 1.4 kg and 4.0 kg. Two studies included only infants and children (range, 1 month to 4.5 years) with weight ranging between 3.7 kg and 17.3 kg. Only one study included neonates, infants, children, and adolescents, although the total number of included subjects (n = 17) was limited. Intravenous bolus administration was used in most studies (n = 5) followed by continuous infusion (n = 2), whereas 1 study only applied continuous infusion. Only limited PK data are available in preterm neonates, which warrants future research.

Acetaminophen. Acetaminophen (paracetamol) is the most commonly prescribed analgesic to treat mild to moderate pain to be administered by the rectal, oral, or intravenous route. In an attempt to avoid or reduce opioid exposure, intravenous acetaminophen is increasingly used in preterm- and term-born neonates. Pooled data with subsequent external validation of intravenous acetaminophen PK in neonates are available. The same holds true for the maturation of the different routes (glucuronidation, sulfation, and oxidation) involved in acetaminophen metabolism. Flint et al. recently reported a gestational age–dependent increase in glucuronidation without evidence for saturation of a specific pathway, as there was a proportional increase in exposure of acetaminophen and its metabolites in extreme preterm neonates between 24 and 32 weeks’ gestational age. Despite the availability of these PK data, intravenous acetaminophen is still used off label for specific subpopulations (limited from term neonates onward in Europe, and still off label in children under the age of 2 years in the United States).

As reported by Laughon et al., this is because efficacy could not be documented in the registration studies perhaps because we miss “common” models similar to the third molar surgery model, to assess the analgesic effect of nonsteroidal anti-inflammatory
drugs, including acetaminophen, in adults. The relevance of the study model is also reflected in the fact that the available observations on acetaminophen analgesia during procedures (heel prick, retinopathy of prematurity screening) suggest that acetaminophen is a poor procedural analgesic. In contrast, there is a proven and clinically relevant (~66%) morphine-sparing effect of intravenous acetaminophen after major neonatal noncardiac surgery. The morphine-sparing effect has also been observed in a retrospective analysis on morphine consumption in very low gestational age infants (<32 weeks) before and after introduction of intravenous acetaminophen. Intravenous acetaminophen is also effective for moderate pain relief following traumatic delivery or medical conditions, with an effect compartment concentration similar to children and adults.

Sedatives

Propofol. Propofol is used in many clinical settings in both adult and pediatric populations. However, given the increased risk of metabolic derangements and organ system failures known as propofol infusion syndrome, propofol should preferably be used only for short-duration sedation. Gestational and postnatal age both contribute to propofol clearance, with very fast maturation of clearance in early infancy. This implies that neonates in the first week of postnatal life are at an increased risk for accumulation during either intermittent bolus or continuous administration of propofol, irrespective of the age or weight at birth. This knowledge was subsequently integrated in a propofol dose-finding study (effective dose for 50% of patients, ED50) through 8 patient strata (postmenstrual and postnatal age) to attain optimal effects for endotracheal intubation in neonates for the INSURE (intubation, surfactant administration, extubation) indication. It was determined that the ED50 dose for preterm neonates varied between 0.7 and 1.4 mg/kg. This is significantly lower than initially suggested in literature. Even with these lower doses, clinical recovery was accompanied by permissive hypotension (no clinical shock and no treatment).

Midazolam and Clonidine. A recent Cochrane analysis found no arguments for the use of midazolam as drug of choice for sedation in newborns compared with other medications because it did not seem to make the participants more sedated, nor did it reduce anxiety or pain, or made it the procedure easier to perform. However, evidence was rated to be of low quality, as many trials did not explain how participants were randomized to either midazolam or a different treatment. In a systematic review, Vet et al identified 25 studies evaluating the level of sedation in pediatric intensive care unit patients receiving continuous sedation, the most frequently used drug being midazolam. Of these studies, 23 used sedation level as the secondary outcome and concluded that the level of sedation in critically ill children is often suboptimal. In particular, oversedation was found to be more common than undersedation, which has been associated with adverse long-term outcomes.

As an alternative for midazolam, many institutions currently prefer clonidine. Three randomized controlled trials assessing the use of clonidine in the pediatric intensive care unit have recently been published. The first compared the opioid- and sedative-sparing effect of placebo versus clonidine (fixed at 1 μg/kg/h; median duration: 168 hours) in ventilated medical and surgical patients. The trial indicated decreased sedative and analgesic requirements in neonates, although this was not found in older children of up to 2 years of age. In the clonidine group, a mild and well-tolerated decrease in systolic and mean blood pressure was observed compared to the placebo group, while heart rate was similar between groups. In a pilot multicenter trial, the opioid- and benzodiazepine-sparing effects of oral clonidine (5 μg/kg every 6 hours) compared to placebo were analyzed. The incidence of significant hypotension and bradycardia was similar between groups. The SLEEPS (Safety Profile, Efficacy, and Equivalence in Paediatric Intensive Care Sedation) study compared the efficacy of clonidine (0.75–3 μg/kg/h) and midazolam (50–200 μg/kg/h) for sedation in ventilated children (1 month to 15 years), concluding noninferiority of clonidine to midazolam. Alternative ways of providing sedation such as the concept of daily sedation interruption have not been shown to be effective in critically ill children. In neonates, a recent Cochrane systematic review found only 1 trial that met the inclusion criteria to assess the efficacy and safety of clonidine used in term and preterm newborns for sedation during ventilation, and this evidence was therefore deemed insufficient.

Dexmedetomidine. An increasing number of publications deal with the use of dexmedetomidine mainly in the pediatric intensive care unit population—in particular for sedation in hemodynamically unstable patients, such as postcardiac surgery. A recent review of the use of dexmedetomidine in the pediatric population showed that evidence favoring dexmedetomidine in children is mainly extrapolated based on adult studies, small randomized controlled trials, and observational studies. Pediatric trials are therefore needed, with a specific focus on newborns and infants, taking into account the major side effects documented in the literature for dexmedetomidine, hypotension and bradycardia, for which continuous cardiac monitoring is needed.
Apart from its sedative effect, dexmedetomidine is also used as an adjuvant analgesic drug as recently published in a systematic review by Schnabel et al. As many studies deal with optimal dosing and comparative effectiveness of dexmedetomidine, evaluating long-term effects of dexmedetomidine on the developing brain is essential as well.

Neurodevelopment Following Common Analgesic and Sedative Drugs

Despite a generally average intelligence, the incidence of academic difficulties is high following neonatal critical illness. This finding is highly suggestive of an alternative explanation related to specific neuropsychological deficits rather than general intellectual functioning. Although a complex interplay of deleterious factors associated with neonatal critical illness is likely to be the underlying cause of these long-term neuropsychological deficits, an important first step is to evaluate different potential contributors independently. Recently, more studies have evaluated the negative effects of analgesic sedatives on the developing brain. This is of interest because the adjustment to analgesic sedatives may also play an important role. Moreover, the balance between pain and exposure at 10 years of age with respect to neuropsychological functions, such as memory, attention, and executive functioning.

The ontogeny of the nervous system is based on a complex pattern of cell proliferation, migration, differentiation, and selective cell survival and includes apoptosis and synaptogenesis. Its development relates to a balance of ongoing excitatory and inhibitory signals. Furthermore, the brain matures in a nonlinear fashion from childhood into adulthood, indicating that the timing of microstructural changes differs per brain region. Consequently, the timing of injuries is likely to also have specific effects on the development of the brain. Exposure of nociceptive and nonnociceptive nervous circuits to analgesics during this period may modulate receptor signaling-related brain development, as demonstrated by various animal experimental studies. Alterations are in part drug and dose dependent, and there is an age-related window of vulnerability for apoptosis or dendritic changes.

Moreover, the balance between pain and exposure to analgesics may also play an important role. Specifically, the limbic system undergoes rapid development in the third trimester and neonatal period. Embedded within the brain's limbic system, the hippocampus and its connections are essential for memory encoding, consolidation, and retrieval. Given the high incidence of memory deficits following neonatal critical illness, this gray matter structure may be particularly vulnerable in these children. In utero, hippocampal morphology and positional changes occur and the hippocampus is thought to resemble adult shape at 25 weeks of gestation. A critical period of hippocampal development is from the third trimester throughout the first 2 years of life when it undergoes a growth spurt. The hippocampus and other limbic system regions may therefore be particularly vulnerable in critically ill preterm and term newborns.

In the next section, studies describing the effects of commonly used sedatives and analgesics on the developing brain and neuropsychological functioning later in life following neonatal critical illness are summarized.

Analgesics

Worldwide, opioids such as morphine and fentanyl are regularly used in preterm and term born neonates during admission to the neonatal intensive care unit. Neonatal opioid therapy to mitigate the effects of painful and stressful procedures may affect the developing brain as well. Interestingly, animal models have demonstrated some neuroprotective effects of morphine as a pretreatment for pain and in case of certain levels of pain or stress. However, concerns have been raised as a result of studies showing that opioids such as morphine may induce apoptosis in human microglial cells and neurons and long-term changes in brain function and memory.

Morphine. The long-term effects of morphine administration in preterm-born children are comprehensively evaluated in follow-up studies among children from 2 well-defined cohorts. Follow-up studies of the cohort of de Graaf et al. found that morphine exposure was significantly negatively correlated with only one IQ subtest at the age of 5 years. At 8 to 9 years of age, however, this negative effect disappeared and morphine was even positively correlated with executive functioning. In line with these findings, a third study did not find major negative effects in children from this cohort who did receive morphine compared to healthy term-born children without neonatal morphine exposure at 10 years of age with respect to neuropsychological functioning or pain sensitivity. However, whether morphine itself or the underlying condition causes long-term adverse events remains a topic of debate.

With regard to brain morphology, van den Bosch et al. found strong, negative correlations between neonatal opioid exposure and volumes of pain-related brain regions, total gray volume, and cerebral white matter at school age in children born preterm (26–36 weeks). However, the neuropsychological outcome of those...
born preterm did not differ from the norm population and was not associated with morphine exposure. In contrast, Ferguson et al. demonstrated differences at term-equivalent age and during childhood in head circumference between 14 morphine-treated and 5 placebo-treated children born at 23 to 32 weeks of gestation. At 5 to 7 years, overall IQ and academic achievement did not differ between these groups; however, short-term memory was significantly worse in children treated with morphine compared to the placebo-treated children. A recent neuroimaging study assessing the effects of morphine on brain development in preterm infants (24–32 weeks) demonstrated that increased neonatal morphine exposure was associated with smaller cerebellar volume at term-equivalent age but not with cerebral volume. Furthermore, greater morphine exposure was associated with poorer cognitive and motor outcomes at 18 months.

A few follow-up studies have been conducted in term-burn survivors of neonatal critical illness as well. In a neuroimaging study by van den Bosch et al., school-age extracorporeal membrane oxygenation survivors were less sensitive to the detection of cold but showed similar pain sensitivity and chronic pain compared to healthy controls. Importantly, no differences in brain activation during pain or in pain-related brain regions were observed. However, associations with morphine and midazolam exposure were not assessed in this study. Children treated with neonatal extracorporeal membrane oxygenation treatment are often exposed to prolonged continuous opioids and sedatives in the absence of major pain. This may contribute to the long-term neuropsychological deficits and brain alterations observed in these patients at school age and even in adolescence. In 8-year-old extracorporeal membrane oxygenation survivors, specific attention problems were found irrespective of generally average intelligence. However, outcome at 8 years was not associated with the time children had been exposed to opioids or other sedatives.

Fentanyl. Fentanyl is another commonly used analgesic in the neonatal intensive care unit that may have effects on the developing brain as well. In preterm infants (23–30 weeks), a higher cumulative fentanyl dose was associated with a higher incidence of cerebellar hemorrhage as well as lower cerebellar diameter. However, 2 studies that have analyzed the association between cumulative fentanyl dose and developmental outcome at 2 years of age found no relation between the two. This may be due to the fact that at 2 years old, only general mental functioning can be assessed. The cerebellum has been shown to be involved in various higher-order cognitive functions, such as visuospatial processing, attention, and executive functioning. As these higher-order cognitive functions cannot be reliably assessed before school age, long-term neuropsychological follow-up of these children is imperative to better understand the impact of morphine and fentanyl exposure on neurodevelopmental outcome in these children.

Acetaminophen. The safety and potential long-term effects of acetaminophen warrant additional exploration. The shift from opioids to acetaminophen is largely driven by the perceived better safety profile. This is likely the case when we compare short-term aspects like hemodynamics or respiratory depression following either opioid or acetaminophen administration. However, intriguingly, a recent Cochrane review concluded that acetaminophen given after assisted vaginal birth may lead to an increased response to later painful exposures. Data on long-term safety following acetaminophen exposure are based on epidemiologic association-type studies. These associations suggest a link between fetal exposure and subsequent risks for atopy, infertility, or neurobehavioral problems, and these links are further supported by animal experimental observations. In particular, when it comes to neurodevelopment, concerns have been raised about an increased risk of attention deficit hyperactivity disorder, autism spectrum symptoms, and neurocognitive deficits following early exposure to acetaminophen, although most studies are based on prenatal exposure or animal studies (reviewed by de Fays et al. and Avella-Garcia et al.). A recent study on the long-term effects of acetaminophen in mice showed that adverse effects on adult behavior and cognitive function occurred in both male and female mice exposed to paracetamol on postnatal days 3 and 10 but not when exposed on postnatal day 19. These neurodevelopmental time points in mice correspond to the beginning of the third trimester of pregnancy and the time around birth in humans. These findings suggest particular sensitivity of the brain in the preterm and neonatal brain. Future clinical studies are needed before conclusions can be drawn on the effect of neonatal exposure to acetaminophen on long-term neuropsychological outcome.

Sedatives.

Propofol and Midazolam. Exposure to propofol and midazolam in the neonatal period has been suggested to negatively affect the developing brain in animals and humans. Although studies in humans are scarce, findings from experimental studies suggest that, in particular, hippocampal development and long-term learning memory are affected after exposure to these agents. Interestingly,
Discussions have shown long-term hippocampal alterations and associated memory deficits across survivors of neonatal critical illness, irrespective of gestation age or underlying disease. The hippocampus is the brain’s central hub for memory encoding, consolidation, and retrieval. Benzodiazepines, such as midazolam, potentiate the neuronal inhibitory pathways or inhibit the excitatory pathways by binding to gamma-aminobutyric acid or glutamatergic N-methyl-D-aspartate (NMDA) receptors in the brain. In the hippocampus, NMDA receptors are highly involved in long-term potentiation, a system of persistent strengthening of synapses following high levels of stimulation, that results in the ability to form memories. If these NMDA receptors become occupied due to the presence of, for instance, midazolam, memory formation will be disrupted.

In preterm infants, the acute effects of midazolam on the brain have been studied directly. Injection with midazolam led to a decrease in middle cerebral artery blood flow velocity and transient cerebral hypoperfusion. As the hippocampus is selectively vulnerable to cerebral hypoperfusion, this may contribute to the specific effects of midazolam on the hippocampus, and thus on memory. A recent clinical study in preterm-born neonates (24–32 weeks of gestation) evaluated how midazolam exposure affected the hippocampus using magnetic resonance imaging (MRI). They demonstrated a selective, negative effect of midazolam on hippocampal growth from birth to term-equivalent age, even after adjusting for the number of invasive procedures and other common clinical care practices. Long-term outcome studies are needed to evaluate whether the hippocampal growth reductions in response to midazolam exposure are associated with memory deficits, and whether this exists in both preterm- and term-born survivors.

Dexmedetomidine. Interestingly, rodent studies have shown that dexmedetomidine and clonidine may reduce anesthetic-induced apoptosis, specifically in the hippocampus, and diminish subsequent cognitive decline. However, future clinical studies are needed to assess whether these agents are neuroprotective in neonates as well.

Discussion

Although animal studies have fairly consistently demonstrated brain development to be negatively affected by various classes of drugs, such as anesthetics, benzodiazepines, and to some extent opioids, associations in survivors of neonatal critical illness seem less obvious. This may be due to differences between animal and human studies, resulting in more contradicting conclusions in humans (for a review on this matter, please refer to van den Bosch et al.). Nonetheless, our findings seem to suggest a link between the use of analgesics, such as morphine and fentanyl, and cerebellar volume in critically ill infants. Concerning sedatives, direct links between midazolam exposure and hippocampal alterations have been described in preterm infants. Commonly used sedatives such as midazolam and propofol bind either to gamma-aminobutyric acid or NMDA receptors. The gamma-aminobutyric acid and NDMA receptor systems are crucial for neuronal connection and communication in the developing brain and, if unavailable, lead to neuroapoptosis. These agents have been suggested to disrupt memory formation through its effects on the hippocampus. Memory formation and recall are dependent on long-term potentiation, a system of persistent strengthening of synapses following high levels of stimulation. Long-term potentiation, which mainly happens in the hippocampus, relies heavily on NMDA. Although based on animal studies, midazolam was found to affect pyramidal neurons in the CA1 region and memory by suppression of long-term potentiation. This mechanism may be underlying the negative effects of midazolam found on the hippocampus in preterm infants and may subsequently lead to memory deficits later in life in these children. (Please also refer to a recent review on other proposed mechanisms underlying the effects of analgosedatives and anesthesi on the brain by van den Bosch et al.) As both the cerebellum and hippocampus are important for higher-order cognitive functioning and seem to be targeted by analgosedatives, damage to these brain regions may be (partly) underlying the long-term deficits following neonatal critical illness.

The indications that exposure to analgosedatives in neonates and infants may affect specific brain regions responsible for higher-order cognitive functioning warrant future research. Specifically, as these functions, such as memory, do not fully develop until later in childhood, it is imperative that long-term neuropsychological outcomes are measured when studying the effect of analgosedatives following neonatal critical illness. Therefore, studies described in this review that include only the assessment of general intellectual ability at 24 months (corrected age), for example, with the commonly used Bayley Scales of Infant and Toddler Development, Third Edition, as well as general intellectual abilities at a later age are less informative in this respect. Future studies on the effect of commonly used analgosedatives that include neuropsychological assessment and neuroimaging later in childhood are
needed to more reliably assess the potential clinical effect of cerebellar and hippocampal alterations on cognitive outcome before definitive conclusions can be drawn.

Problematically, analgosedatives will remain a necessary treatment as the experience of pain itself has been shown to negatively impact neurodevelopment as well. Ranger et al.109 showed that pain-related stress predicted cortical thickness at 7 years in preterm-born children, independent of morphine exposure. Also, a higher number of painful (skin-breaking) procedures in preterm-born children was found to be associated with reduced white and subcortical gray matter.2,110 In addition to pain, studying the association between analgosedatives and neurodevelopmental outcome is likely to be affected by differences in dosages. Moreover, critically ill infants are exposed to other factors such as stress, hypoxia-ischemia, and neuroinflammation during a vulnerable and critical period of brain development. A complex interplay among these factors may lead to (subtle) brain injuries early in life, which become evident only later in life when those brain regions are required for higher cognitive functioning. In particular, the hippocampus, the main hub for memory formation in the brain, has been found to show pronounced vulnerability to factors associated with critical illness, including exposure to sedatives.6,80 This “growing into deficit” phenomenon,111 where early hippocampal alterations lead to memory deficits later in life, has recently been identified by our group across survivors of neonatal critical illness.80 To what extent exposure to analgosedatives contribute to early brain injury in these patients needs further research that combines information on analgosedative exposure and exposure to confounding factors, such as pain, with neuroimaging and elaborate neuropsychological assessment.

Elaborate neuropsychological assessment is essential, as an increasing number of studies have found that survivors of neonatal critical illness are at risk of specific memory and attention deficits rather than intellectual disability.66–68,112 The majority of clinical studies described in the current review used only general neurodevelopmental outcome measures such as intelligence at preschool or school age. Therefore, it is difficult to draw any definitive conclusions on how and to what extent analgosedatives affect the brain in critically ill neonates. Better understanding of the association between the brain, cognition, and analgosedative exposure in early life is needed to optimize adequate pain management in neonates. Future studies combining elaborate neuropsychological assessment with multimodal neuroimaging techniques, such as (functional) MRI and diffusion tensor imaging, are therefore needed.

In this vulnerable population, there is a significant need for early predictors of long-term neuropsychological deficits and school problems. As of now, identification of patients at risk relies solely on neuropsychological assessment, which cannot be reliably conducted until school age.68 By this time, the cognitive deficits may have already hampered school performance in a number of children.57 Predictors that can be measured as early as during first admission (“biomarkers”) are therefore of utmost importance. A better understanding of how and to what extent analgosedatives affect the brain may contribute to identifying which patients are most at risk. Within this context, interaction with age and developmental stage are essential. Furthermore, given the high incidence of memory deficits following neonatal critical illness,80,113 early identification of patients at risk of memory deficits may become possible using hippocampal volume as a neurobiological marker. The hippocampus can be accurately and noninvasively delineated using structural MRI and is the brain’s critical hub for long-term memory formation.79,81 Because of these features, the hippocampus is an important target for future studies aimed at improving long-term outcomes following neonatal critical illness. In preterm infants, studies have shown that MRI can be reliably performed without sedation and that infant hippocampal volumes, measured at term-equivalent age, correlated with memory outcomes later in childhood.114,115 However, it is important to note that even the more advanced MRI techniques are not sensitive enough to provide us with information on the exact anatomic or molecular mechanisms underlying neuropsychological deficits. The exact contribution of exposure to analgosedatives on neuropsychological outcome therefore remains speculative.

In neonatal pain management, the ultimate goal is to achieve adequate pain management with minimal short- and long-term side effects. The search for the lowest, most effective exposure to analgosedatives becomes even more relevant when taking into account their potential effect on long-term neurocognitive outcome.6,14,71,85 For both new compounds and for the already used drugs, dose finding studies (phase 2) can be very instructive before conducting phase 3 efficacy and safety trials.74 The earlier mentioned study on morphine-sparing acetaminophen in neonates and infants46 used a much lower dose of morphine in neonates and infants and still resulted in further reduction of the morphine maintenance dose (~66%) in cases coexposed to acetaminophen. Similarly, the ED50 of propofol (0.5–1.5 mg/kg) to enable endotracheal intubation turned out to be significantly lower compared to the routine practices.51,53,54 Furthermore, the increased use of (new) drugs such as dexmedetomidine will result
in evidence-based pharmacotherapy only when assessed using appropriate and comparative effectiveness trials. Together with advanced analysis techniques such as population PK and physiology-based PK on sparse data sets, we will reach a higher level of evidence-based dosing of analgesedative drugs in neonates. The same holds true for future application of principles of pharmacovigilance studies. This is especially of interest since experimental studies have suggested that dexmedetomidine may have neuroprotective effects as well.106,107

Conclusions

Indications from both animal and clinical studies that early exposure to analgesedatives may have long-term effects on the brain and cognition warrant future research. As the number of critically ill neonates admitted to intensive care units grows worldwide and more and more of these patients survive to discharge due to medical improvements,7,8 the long-term outcome after surviving neonatal critical illness can no longer be ignored. It is therefore of utmost importance that we continue to gain insight into how pharmacotherapy affects the developing brain by taking the potential long-term sequelae as primary outcome parameters in future studies and that this information is used when optimizing pain management in neonates.

Disclosures

The authors declare that they have no conflicts of interest. R.S. was supported by the Sophia Stichting Wetenschappelijk Onderzoek (SSWO): S14-21. The research activities of K.A. are facilitated by the agency for innovation by Science and Technology in Flanders (IWT) through the SAFEPEDRUG project (IWT/SBO 130033).

References

96. Philippot G, Gordh T, Fredriksson A, Viberg H. Adult neurobehavioral alterations in male and female mice following

