Disorders of Menstruation in Adolescent Girls

Mary Anne Jamieson, MD

KEYWORDS
- Adolescent
- Menstrual disturbances
- Amenorrhea
- Menstruation
- Dysmenorrhea
- Abnormal uterine bleeding

KEY POINTS
- Distinguishing whether the teen is ovulatory or not can be helpful in narrowing the differential diagnosis.
- The menstrual cycle can take several months to become regular and ovulatory. Reassurance may be all that is necessary but treat if interfering with activities or depleting the teen (physically and/or emotionally).
- Primary physiologic dysmenorrhea is usually not present at menarche; it accompanies the establishment of ovulatory cycles. Take NSAIDs proactively and be suspicious of endometriosis if properly administered nonsteroidal antiinflammatory drugs (NSAID) in combination with Combined Contraceptives (CCs) fail to control dysmenorrhea. Similarly, be suspicious of outflow obstruction if dysmenorrhea is intractable, if menarche is painful or if puberty is near complete and no menses has occurred.
- CCs offer many benefits but teens and/or parents often have misinformation about safety and side effects that must be addressed.
- Functional amenorrhea is a diagnosis of exclusion and is caused by an imbalance of stress, diet, and/or exercise. These factors can also cause irregular menses.
- It can be difficult to identify polycystic ovarian syndrome (PCOS) patients during adolescence.
- With true menorrhagia, take bleeding history from teen and her family.

INTRODUCTION
Abnormal menstruation in adolescent girls can cause psychological, emotional, and physical strain from excess, unpredictable, painful, or even absent bleeding. This article discusses these common complaints and describes variations of normal, including the maturation of the hypothalamic-pituitary-ovarian (HPO) axis, but goes on to provide indications for reassurance alone versus active intervention. (Figs. 1 and 2) show broad differential diagnoses for common symptoms. It is important for readers to recognize that these key figures and their list of underlying
Fig. 1. Abnormal uterine bleeding in adolescents: heavy, prolonged, and/or irregular (those noted with an asterisk can also present as secondary amenorrhea). CNS, central nervous system.
Fig. 2. Primary amenorrhea. GnRH, gonadotrophin-releasing hormone; MRKH, Mayer Rokitansky Kuster Hauser syndrome; PCOS, polycystic ovarian syndrome.
conditions are meant to guide the clinician’s history, physical examination, and the choice of investigations. Treatment options are organized according to symptoms and presenting complaints in Table 1, which can be referenced regardless of the underlying disorder. The article elaborates on hypothalamic/functional amenorrhea, polycystic ovarian syndrome (PCOS), and primary dysmenorrhea, and applies or adapts the previously described basic principles of history, physical examination, investigations, and treatment to these conditions. To avoid missing the diagnosis, inherited bleeding disorders are discussed.

THE COMMON PRESENTING COMPLAINTS

Care providers for adolescent girls are likely to be confronted with concerns over periods that are perceived as too heavy or prolonged, too painful (dysmenorrhea), irregular (unpredictable, too frequent, or infrequent), and/or nonexistent (primary or secondary amenorrhea). There are many suggested sets of terminology but, to avoid misinterpretation, this article uses lay language descriptors and the term abnormal uterine bleeding (AUB). When it comes to heavy flow, it is often helpful to first elicit evidence of ovulation (classic premenstrual moulamina such as breast tenderness, headaches, cyclic mood changes, and cycle regularity). When cycles are regular and ovulatory, but still heavy, the problem is more likely the teen’s inability to manage idiopathic heavy flow or a bleeding disorder. In contrast, anovulatory cycles, or cycles triggered by infrequent ovulation, can be heavy and/or prolonged. When ovulation is absent or infrequent, the underlying cause is often endocrinopathy; imbalance or syndrome at the hypothalamus, the pituitary, or at the ovary (see Fig. 1). Infections of the lower genital tract (or a retained tampon) tend to cause intermenstrual bleeding, and pregnancy must be considered with almost every change in menstrual cycle or abnormal vaginal bleeding presentation.

Key point/pearl

- Distinguishing whether the teen is ovulatory or not can be helpful in narrowing the differential diagnosis.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Medicinal treatment options for problematic menstrual bleeding (symptom based)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy (and/or Prolonged) Flow</td>
<td>Irregular: Infrequent and Unpredictable</td>
</tr>
<tr>
<td>CCs</td>
<td>CCs</td>
</tr>
<tr>
<td>Antifibrinolytic</td>
<td>Cyclic oral progestins</td>
</tr>
<tr>
<td>NSAIDs (proactive)</td>
<td>Maybe do nothing if ≥4 cycles/y</td>
</tr>
<tr>
<td>LAP</td>
<td>—</td>
</tr>
<tr>
<td>Course of oral progestin (if isolated prolonged bleed; discussed later)</td>
<td>—</td>
</tr>
</tbody>
</table>

Options need not be tried in the order listed. Antifibrinolytics are tranexamic acid or aminocaproic acid.

Abbreviations: CCs, combined contraceptives (eg, oral pill, transdermal patch, vaginal ring); LAPs, long-acting progestins (ie, depomedroxyprogesterone acetate or levonorgestrel intrauterine system); NSAIDs, nonsteroidal antiinflammatory drugs.
WHAT IS NORMAL, AND THE MATURATION OF THE HYPOTHALAMIC-PITUITARY-OVARIAN AXIS

Although there may be trends toward earlier puberty, the average age at menarche has been fairly stable between ages of 12 and 13 years in Canada and the United States. More than 90% of adolescent girls have had menarche by 14 years of age. It is generally accepted that most menarchal bleeds are the result of endometrial proliferation from estrogen. Both thelarche and leukorrhea are evidence of estrogen exposure and precede menarche by 1 to 2 years. Menarche is an anovulatory bleed; often the result of erratic sloughing of the proliferative endometrium as opposed to a synchronous slough 2 weeks after ovulation, which explains why, for many young teens, the bleed can be prolonged and heavy but, at the same time, usually fairly painless (discussed later). It is also generally agreed that the HPO axis needs time to mature, averaging 6 months to 3 years before regular ovulatory cycles are established. The earlier menarche occurs, the sooner cycles regulate. During these months immediately after menarche, teens can experience cycles consistent with ovulatory dysfunction: irregular and unpredictable (frequent or infrequent), heavy and prolonged, but intervals between menses are seldom greater than 3 months. It is well recognized that teens and their parents may have misinformation or misguided expectations about what is normal. Education and reassurance are sometimes all that is necessary if the girl is otherwise coping. They may report her to be irregular if the cycle is not exactly every 30 days and they may report her to be experiencing heavy bleeding because she is having menstrual accidents but she is still learning how and when to use pads/tampons. Regular ovulatory cycles typically occur every 21 to 34 days and blood loss is less than 80 mL. Trying to determine which teens are experiencing abnormally heavy flow (and among them, which may have an inherited bleeding disorder [discussed later]) can be challenging. Looking for anemia and clarifying the number of saturated pads/tampons required in a day and the number/size of clots can be helpful but how it affects the girl’s life is paramount. However, having to change a pad/tampon every 1 to 2 hours and greater than 7 days’ moderate/heavy flow is likely excessive. Whether the teen is merely experiencing HPO axis maturation, or whether she has an underlying disorder, treatment should be indicated if the problem is causing distress or dysfunction. The American College of Obstetricians and Gynecologists’ committee on Adolescent Health care has a useful summary of the menstrual cycle as a vital sign, which outlines expectations and causes for concern, and Wilkinson and Kadir reviewed adolescent menstrual disorders in a supplement of the Journal of Pediatric & Adolescent Gynecology that is dedicated to this topic and inherited bleeding disorders.

Menstrual Cramps (Dysmenorrhea)

With the establishment of ovulatory cycles, the teen may begin to experience dysmenorrhea. Primary dysmenorrhea refers to prostaglandin-mediated physiologic menstrual cramping typical of ovulatory cycles. Dysmenorrhea is typically absent from the first several menses because they are often anovulatory, and it is concerning when the menarchal bleed is very painful because it can be the result of obstructed outflow (discussed later).

Key point/pearl

- The menstrual cycle takes 6 months to 3 years on average to become regular and ovulatory.
- Reassurance may or may not be all that is necessary even if symptoms are considered a physiologic variant. Treat if interfering with activities or depleting the teen (physically and/or emotionally).
• Underlying disorders (see Fig. 1) such as disordered eating, PCOS, pregnancy, and bleeding disorders can be present during the first few years after menarche. Immaturity of the HPO axis is a default diagnosis.
• Primary physiologic dysmenorrhea is usually not present at menarche; it accompanies the establishment of ovulatory cycles.
• Helpful patient/parent information is available:
 ○ http://www.naspag.org/index.php/patients
 ○ http://www.sexualityandu.ca/parents/discussing-menstruation
 ○ http://www.youngwomenshealth.org

Interpreting and Using the Figures

Fig. 1 provides a broad differential for heavy bleeding, prolonged bleeding, and/or irregular bleeding. The conditions noted by an asterisk (*) can also cause secondary amenorrhea. Secondary amenorrhea traditionally was a term reserved for cessation of menses of 6 months or more. Many clinicians now advocate for the criterion to be only 3 months or 90 days. Although there is less chance of disorder, this more lenient criterion affords more opportunity for early recognition of pregnancy, eating disorders, and so forth. Fig. 2 provides a broad differential for primary amenorrhea, which may or may not be accompanied by delayed or arrested puberty. Although definitions vary, delayed puberty in a girl refers to absence of breast development (thelarche) by age 13 years. Neither figure includes the hypothalamic-pituitary-adrenal axis, but conditions such as congenital adrenal hyperplasia, Cushing, and tumors (adrenal gland and ovary) need to be considered when there is significant androgenization/virilization or other stigmata. Chronic illness can include disorders such as type 1 diabetes, renal failure, and inflammatory bowel disease. Both hyperthyroid and hypothyroid disease can affect the HPO axis functionality and thus both figures mention thyroid endocrinopathy. Both figures list premature ovarian failure (POF), which can be idiopathic or caused by gonadal dysgenesis/agenesis (ex Turner syndrome), fragile X premutation, cancer therapies (chemotherapy, radiation), autoimmune oophoritis, and so forth. Autoimmune POF often coexists with other autoimmune conditions in the patient and/or her family. Primary ovarian insufficiency is an entity in itself but for the purposes of this article it should be considered a mild form of POF or a state of transition. Remember that these figures are meant to guide the history, physical examination, and choice of investigations.

ABNORMAL UTERINE BLEEDING: THE GENERIC ASSESSMENT

History: Key Features

• Explicit description of menstrual complaints, perceived menstrual cycle, and time elapsed since menarche: if heavy, try to establish how heavy by inquiring about the frequency required for changing pads/tampons, number and size of clots, and the duration of flow. Recall that changing pads/tampons every 1 to 2 hours and consistently greater than 7 days’ heavy flow is likely excessive. If irregular, try to establish how irregular by inquiring about the longest and shortest intervals between menses. Recall that normal menses occur every 21 to 34 days and although it can take up to 3 years to establish a normal regular cycle, irregularity should prompt inquiry guided by the disorders listed in Fig. 1. For both heavy and irregular menses, try to ascertain whether the girl is ovulatory by asking about molimina such as breast tenderness, cyclic mood changes, and cramping. If painful, try to establish whether the pain is consistent with physiologic dysmenorrhea and treatments tried and how they were used (discussed elsewhere in the article). If absent (amenorrhea), establish whether it is primary (never menstruated), or secondary (>90 days warrants assessment). Other
important clues include the mother’s age at menarche, any history of pelvic pain, the subjective impression of pubertal progression, and any chance of pregnancy.

- Review of systems using Fig. 1 or 2 as a guide looking for symptoms of endocrinopathy or syndromes such as dieting, thyroid imbalance, or PCOS.
- Sexual history and need for contraception.
- Traditional past medical history, past surgical history, medications, smoking/risk taking, allergies, and related family history.

Physical Examination

Depending on the presenting complaint, clinicians should use Fig. 1 or 2 as a guide when looking for physical stigmata of endocrinopathy or syndromes such as short stature (Turner syndrome), underweight (eating disorder), goiter (thyroid condition), and hirsutism/obesity (PCOS).

Physical Examination: Key Features

- Height, weight, body mass index (BMI) (calculate percentage and plot on growth chart), blood pressure (especially if the patient is obese or has PCOS features, and/or if combined contraceptives [CCs] will be prescribed).
- Secondary sexual characteristics/Tanner staging, if applicable.
- Abdominal examination.
- If menses are absent, introital examination must be included and consider single-digit vaginal examination. Is there a vagina, patent hymen, leukorrhea? Leukorrhea is suggestive of current estrogen.
- Speculum examination is not always indicated (recall, Pap smear is no longer indicated in teens, and urine can be sent for some sexually transmitted infection [STI] screening).
- If there is intermenstrual bleeding, and/or the girl is sexually active, consider a speculum examination, but, if the teen is precoital, choose a narrow speculum (if deemed necessary).

Investigations and Diagnostic Tools

It is hoped that, through history and physical examination, the differential diagnosis has been narrowed, but the clinician usually needs to choose from the following list of investigations to confirm or refute plausible conditions.

Investigations and Diagnostic Tools to Consider

- Urine human chorionic gonadotropin (HCG)
- Complete blood count, ferritin
 - Anemia might corroborate abnormally heavy flow and raise the suspicion of a bleeding disorder or add justification for treatment
- Thyroid-stimulating hormone (TSH) (free T4), plus or minus prolactin
- Follicle-stimulating hormone (FSH), luteinizing hormone (LH)
 - High (menopausal) gonadotropin levels confirm gonadal or ovarian insufficiency or failure (discussed elsewhere in the article). If LH and FSH are both less than 1 the clinician can be confident that the problem is hypothalamic or pituitary dysfunction, but often low normal values are difficult to interpret.
- Ultrasonography pelvis.
- Clinicians should individualize the need for cervix and/or vaginal swabs, and pregnancy testing. Although urine can be tested for gonorrhea and *Chlamydia*, *Trichomonas* requires a vaginal swab.
 - Examples of accessory testing to consider:
- If functional or hypothalamic amenorrhea, PCOS, or bleeding disorder is suspected, see the relevant parts of this article outlining other warranted investigations.
- If there are central nervous system (CNS) symptoms or hyperprolactinemia, consider brain imaging.
- If there is gonadal insufficiency or failure, order karyotype and consider referral (pediatric endocrine, pediatric/adolescent gynecology, genetics).
- If there is profound or marked hyperandrogenism/virilization, consider serum androgens plus or minus adrenocorticotropic hormone (ACTH) stimulation and imaging adrenals. This situation is likely to warrant referral (pediatric endocrine or gynecology).
- If there is intractable dysmenorrhea or primary amenorrhea suggestive of müllerian anomaly, consider MRI pelvis and referral (pediatric/adolescent gynecology or gynecology).

Also consider referral (eg, gynecology, pediatric gynecology, pediatric endocrine, genetics hematology, psychiatry, as indicated) for:

1. Delayed or arrested puberty
2. True eating disorder or elite athlete
3. Inherited bleeding disorder
4. Complex or confusing scenarios in which investigations or response to traditional therapies are unsuccessful

For more detailed reviews of delayed puberty, primary ovarian insufficiency, and POF in adolescents see Refs.6–14

Treatment (in General)

Table 1 presents a symptom-based chart of several useful medicinal treatment options that can be used and referred to by clinicians almost independent of underlying condition. The following list elaborates further on these treatment modalities and a series of questions is provided to help the clinician choose from the various reasonable medications for any particular menstrual complaint/symptom.

Treatment Options (in General)

- Nonsteroidal antiinflammatory drugs (NSAIDs): ibuprofen, mefenamic acid, naproxen sodium, ketorolac
- CCs: daily pill, weekly patch, monthly vaginal ring
 - Consider extended cycle: gradually increase the number of consecutive weeks between hormone-free intervals (HFIs), when either the HFI or the withdrawal bleed are still problematic.
 - Consider shortening the HFI when either the HFI or the withdrawal bleed are still problematic. For example, 4 days off instead of 7.
- Cyclic oral progestins: 5 to 10 mg of medroxyprogesterone acetate or 200 mg of progesterone X for 10 to 14 days. These progestins can be used to induce a withdrawal bleed in teens whose menstruation is heavy and prolonged but infrequent. A single course can also be useful as a medical dilatation and curettage for isolated anovulatory bleeds that continue for several weeks.
- Depomedroxyprogesterone acetate (DMPA) 150 mg intramuscularly every 10–13 weeks.
 - Informed choice about weight gain, side effects (including irregular bleeding or amenorrhea), bone density
Levonorgestrel intrauterine system (LIUS)
- Patient must be properly selected and counseled
- Adolescent age is not a contraindication to intrauterine device or system
- Nulligravid patients may experience more cramping and higher expulsion rate
- Antifibrinolytics: tranexamic acid 1 to 1.5 grams p.o. 3 to 4 times/d, aminocaproic acid 2 to 4 grams p.o. 4 to 6 times/d.

Consider referral when there are contraindications to CCs or for LIUS insertion.

When using Table 1, ask:

1. What are the symptoms of priority? Heavy? Irregular? Painful?
2. What are the patient’s preconceived ideas about, and past successes/failures with, methods?
3. Can the patient/family afford it? Is subsidy available?
4. Will the patient adhere to or accept it (eg, would she take a daily pill or accept an injectable method)?
5. Are there any contraindications (eg, CCs and migraines with complex neurologic features, LIUS and current STI cervicitis)?
6. Are there any other noncontraceptive benefits to be exploited (eg, CCs and acne or hirsutism)?
7. Does the patient also need reliable family planning/contraception? Private time with patient alone should be part of the routine to allow for open discussion and to reinforce healthy sexual choices and advise dual protection (advised).
8. Does the patient also need an iron supplement?

Other key points/pearls (for treatment in general)
- NSAIDs work best if they are taken proactively (and combined when necessary with acetaminophen).
- CCs offer cycle regulation, reduced flow, reduced cramps, and reduced acne/hirsutism with a single medication, but teens and/or parents often have misinformation or misperceptions about safety and side effects that must be addressed to facilitate compliance/adherence. For example, confidently reassure that CCs do not cause significant weight gain or cancer.\(^{15,16}\)
- If planning to use CCs in an extended cycle fashion, slowly increase the number of consecutive weeks between HFIs. Continuous use from the outset often involves persistent breakthrough bleeding that frustrates the teen and leads her to abandon the treatment plan.
- There is still a role for DMPA in properly selected and fully informed adolescents.
- Pelvic examination is not a prerequisite for hormonal methods (except intrauterine).

ABNORMAL UTERINE BLEEDING: CAUSES WORTHY OF PARTICULAR MENTION

Functional hypothalamic amenorrhea, PCOS, dysmenorrhea and inherited bleeding disorders.

Functional Hypothalamic Amenorrhea (and Disordered Menstruation)

Functional (hypothalamic) amenorrhea refers to the absence of menses as a result of an imbalance of stress, dietary intake, and exercise. With respect to dietary intake and exercise, it is generally accepted that there is insufficient nutritional intake to match the energy expenditure, thus resulting in a deficit. Eating disorders or disordered eating are common but not always present, and weight loss may have occurred but is not
a necessity. Gonadotrophin-releasing hormone ceases to pulse effectively (if at all) and the HPO axis gets suppressed or becomes ineffective. The patient’s presentation depends on when the problem is acquired in relation to puberty and menarche, and how severe the extremes of diet/stress/exercise are. The patient may present with delayed puberty or arrested puberty and primary amenorrhea but secondary amenorrhea is far more common and consistent. Disordered menstruation with irregular or infrequent cycles can occur initially or when the imbalance is less severe. Catherine Gordon17 has written an outstanding review of hypothalamic functional amenorrhea for the \textit{New England Journal of Medicine}.

When the teen presents with delayed menarche (primary amenorrhea) the health care provider must consider other differential diagnoses such as (but not limited to) Kallmann syndrome (hypothalamic), POF (gonadal), or a müllerian anomaly (outflow tract) (see Fig. 2). Obstructing anomalies such as imperforate hymen and transverse vaginal septum should be easy to eliminate with a mini–genital examination, especially if there is no history of pelvic pain despite significant pubertal development. Fig. 3 shows some of these anomalies, but more detailed reviews of müllerian anomalies (obstructive and nonobstructive) were published as clinical recommendations in the \textit{Journal of Pediatric & Adolescent Gynecology} December 2014.18,19 Vaginal agenesis [Mayer Rokitansky Kuster Hauser (MRKH) syndrome] can exist with or without a uterus and that uterus may or may not have a nidus of functional endometrium. Thus, whereas/although vaginal agenesis always presents with normal puberty, there may or may not be any pelvic pain complaints. If there is little or no pubertal development, attention should be focused on hypothalamic and ovarian causes (see Fig. 2).

\textbf{Clues on history corroborating functional/hypothalamic disorder}

Patients often report that cycles were regular and then disappeared or became very infrequent (sudden or gradual). Inquiry might identify weight loss, eating disorder, psychosocial stress or anxiety, performance pressure, and exercise for health, weight loss, or competitive athletics. A validated eating aptitudes test could be used.20

Health care providers who care for teens should make regular inquiries about the presence of menstrual cycles and consider this a fifth vital sign.1 Similarly, diet, exercise, and body image are important topics for routine inquiry. Teens who are not menstruating may not be acquiring bone density at the intended rate. Although there

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{Examples of obstructive anomalies.}
\end{figure}
can be denial and a lack of insight, pressing for a detailed dietary log and exercise schedule plus exploring psychosocial stressors and anxiety is important in recognizing and confidently diagnosing functional/hypothalamic amenorrhea.

Clues on physical examination corroborating functional/hypothalamic disorder BMI tends to be low. Look for signs of eating disorders and compensatory behaviors, absent or arrested puberty, and absent estrogen at introitus (e.g., red hyperemic, tissues less plump, few rugae). None of these features are compulsory in making the diagnosis but be sure to rule out signs of other endocrinopathies or syndromes (see Figs. 1 and 2), such as hyperthyroidism or hypothyroidism and PCOS or a true eating disorder. Eating disorder reviews provide extensive lists of stigmata.21,22

Clues from investigations that corroborate functional/hypothalamic disorder Clues include low or undetectable FSH level and low or undetectable LH level, although other investigations, such as TSH, prolactin, and pelvic ultrasonography, will be normal. Once the diagnosis is made, other investigations may be indicated, such as bone density or complete blood count.

Management of functional/hypothalamic amenorrhea

Clinicians should also focus on the menstrual complaints and symptoms and use the guide to general treatment options in Table 1. For example, if the teen has stress-related or diet-related unpredictable and infrequent menses, she could use CCs or cyclic progestins (if she does not need birth control), but this does not address the causative imbalance. For functional hypothalamic amenorrhea (or disordered menses), the patient needs to understand her condition and be motivated to make changes. She may need counseling or strategies to deal with stress, or more likely she will need to increase caloric and nutritional intake or reduce the amount of vigorous exercise she is doing. A consultation and follow-up with a dietician (who has some understanding of this condition) may increase the likelihood of resumption of menses, but the patient should know that it can take some time. Multidisciplinary care may be warranted, especially if there is an underlying eating disorder, an anxiety disorder, or elite athleticism. There is still debate about whether a critical weight or body fat percentage needs to be reached, but, if weight loss was involved in the original cessation of menses, the teen may need to regain that weight and a bit more. Bone health is at risk while the amenorrhea persists and CCs have not been shown to be protective in this setting. This author finds it helpful to conceptualize when explaining this condition and recovery to patients and their parents. Explain that the brain is unwilling to allow fertility until it is convinced that it can trust the adolescent to provide it with regular adequate nutrition (no deficit) and that she is coping better with life. This concept seems to make sense in its simplicity but the addendum always worth mentioning to teens who are (or are going to become) sexually active is that it is not a reliable form of pregnancy prevention.

Key points/pearls

- Functional hypothalamic amenorrhea is a diagnosis of exclusion and is caused by an imbalance of stress, diet, and/or exercise.
- Hypothalamic or brain issues can cause ovulatory dysfunction without necessarily being severe enough to completely suppress the HPO axis. These causes can present with irregular bleeding or amenorrhea.
- Be suspicious if the patient is fully pubertal but has not experienced menarche; ask about pelvic pain, which might signify obstructive müllerian anomaly or müllerian agenesis.
There are 2 specific groups worthy of mention but that are beyond the scope of this article: the female athletic triad and patients with eating disorders (especially anorexia). When exploring history and performing physical examination for amenorrhea and/or disordered menses, health care providers may identify one (or both; they can coexist) of these diagnoses. The female athletic triad refers to absent menses in an athlete with osteopenia and low energy availability (imbalance of nutrition vs energy expenditure but not always with coexistent eating disorder).

Select articles are provided and recommended for more detailed review of eating disorders. Dr Catherine Gordon’s review of functional amenorrhea mentions the athletic triad and Youngwomenshealth.org has patient information on this condition at http://youngwomenshealth.org/2010/05/21/female-athlete-triad/.

Polycystic Ovarian Syndrome

It is now well recognized that PCOS occurs in adolescents, and may begin during childhood or earlier. Typical features/stigmata (not all present in all patients) include obesity, menstrual disturbances, hyperandrogenism, insulin resistance, metabolic syndrome, and polycystic/enlarged ovaries. There is a familial tendency that probably results from both genetic and environmental influences. Because puberty, and specifically the first couple of years after menarche, can be a time of hyperandrogenism, hyperandrogenism, and oligo-ovulation, manifesting as irregular menses and acne, the subgroup of adolescent girls who will ultimately be diagnosed with PCOS can be difficult to identify (without incorrectly diagnosing some girls who are merely peripubertal and premenarchal). Complicating matters is the current epidemic of childhood and adolescent obesity. Although obesity is not a mandatory feature of PCOS, it is present in a significant percentage of girls with PCOS, but this feature has become less discerning as average body weight and BMI has increased alarmingly in North America. Several groups have tried to create and impose diagnostic criteria to unify researchers and the literature for a better understanding of PCOS and to try to validate diagnoses. The most rigorous and selective of the diagnostic criteria schemes specific to adolescents is that put forth by Carmina and colleagues. This definition requires that the teen be at least 2 years postmenarche and have both hyperandrogenism (as shown by acne, hirsutism, alopecia) and oligo-ovulation (<6 cycles per year). In this situation, PCOS is highly likely but, with these criteria, diagnosis is considered absolute if ovaries on ultrasonography show the classic polycystic look or increased ovarian volume. Carmina and colleagues’ criteria take into account the normal physiologic changes of early adolescence and the significant overlap between normal peripubertal (premenarchal) ovaries and classic PCOS ovaries. In contrast, by insisting on 2 years postmenarche, diagnosis could be delayed for some teens, and not all experts support the requirement of ultrasonography features.

A subset of patients with PCOS have metabolic syndrome, which usually involves obesity but specifically refers to hypertension, insulin resistance, glucose intolerance/type II diabetes mellitus, and dyslipidemia. Another subset of patients with PCOS present with primary amenorrhea but these teens tend to be hyperandrogenized and more investigations may be indicated to rule out other conditions.

Consider referral to either a multidisciplinary team or a pediatric endocrinologist and a cardiologist if metabolic syndrome is suspected. Consider referral to a subspecialist if the teen presents with primary amenorrhea and presumed PCOS.

Clues on history that corroborate polycystic ovarian syndrome

Patients often report that cycles are irregular (frequent or infrequent), heavy, and seldom painful (except when there are large clots or occasionally when the patient
is ovulatory). She could also be amenorrheic. Inquiry might identify unexplained excess weight gain at puberty, acne, and hirsutism.

Clues on physical examination that corroborate polycystic ovarian syndrome BMI tends to be high, and there could be increased blood pressure, acne, hirsutism (consider Ferriman-Gallwey score for charting hirsutism). There should not be true virilization. There may be dark, velvety, dirty-looking skin in creases (acanthosis nigricans) and boils in vulva/groin or axilla (hidradenitis suppurativa). Be sure to rule out signs of other endocrinopathies or syndromes (see Figs. 1 and 2) such as hypothyroidism, Cushing syndrome, or another androgen disorders causing marked virilization.

Clues from investigations that corroborate polycystic ovarian syndrome, and investigations to consider Normal FSH and LH levels, but possibly LH/FSH ratio greater than 2; normal TSH and prolactin levels; high fasting insulin level; fasting glucose/fasting insulin ratio less than 4.5; high 2-hour sample after 75-g glucose challenge (to be preceded by 12-hour fast and to include fasting glucose and fasting insulin); abnormal fasting lipid profile (high triglyceride level, low HDL level), and mild increase of total testosterone level (discussed later).

Comment It is this author’s opinion (shared by some investigators but not by others) that serum androgens are not often indicated in the diagnosis of PCOS or the setting of typical hirsutism. If there is marked hyperandrogenism or true virilization (and/or rapid onset/progression), then serum androgens (fasting 17-OH progesterone, plus or minus ACTH stimulation, testosterone (total and free), dehydroepiandrosterone sulfate, androstenedione, and imaging of ovaries and adrenal glands may be indicated, but this is in the extreme and rare setting and warrants referral.

Management of polycystic ovarian syndrome

Readers are also reminded to focus on the menstrual complaints and symptoms, to use Table 1, and to refer to this article’s discussion of treatment options in general. For example, if the teen has heavy menses, she could use antifibrinolytics, but if she also has unpredictable menses and acne/hirsutism she may want to choose CCs; however, this does not address the need for healthy diet and exercise and achieving or maintaining ideal body weight. For an adolescent girl with PCOS, the agenda is more likely to be to gain control of acne, hirsutism, menstrual irregularity, or flow, and the girl’s weight. The patient (or their parents) may also be concerned about future fertility. Ideally the health care provider educates and motivates the teen and her parents in order to avoid the recognized comorbidities and future health issues that patients with PCOS can experience: obesity and type II diabetes (and their sequelae, such as heart disease and sleep apnea), endometrial hyperplasia or malignancy, and psychological distress/poor self-esteem.

First and foremost, healthy diet and exercise need to be achieved. This goal is easier said than done, especially for teens. Teens may be more motivated if they are aware that even modest weight loss can be associated with improvement in their PCOS symptoms, such as menstrual disruption, acne, and hirsutism. While maximizing results through lifestyle, CCs (oral, transdermal, or vaginal) tend to be one of the main therapeutic modalities to achieve both menstrual management and reduced hyperandrogenism (plus pregnancy prevention where necessary). The role of insulin sensitizers in these teens is still a topic of intense debate and controversy, but this author has yet to be convinced they have a role in nondiabetic teens with PCOS.
Polycystic ovarian syndrome, combined contraceptives and venous thromboembolism in adolescents

It is generally accepted that the likelihood of experiencing a VTE event on CC (as an independent risk factor), is increased 2-fold to 3-fold. However, for most teens without an inherited tendency or thrombophilia such as factor V Leiden deficiency, the baseline absolute risk is extremely low (in the order of 1 to 2 per 10,000 woman-years), but hyperandrogenism and obesity (and smoking) are also independent risk factors. However, it is important to recognize that, without an inherited thrombophilia, the likelihood of a VTE event on a CC, regardless of progestin, even in an obese teen with PCOS, is not likely to be much higher than 1 in 1000 and is far lower than the risk associated with pregnancy/postpartum in that same teen.31–37

Key points/pearls

- Suspect PCOS if there is irregular (often infrequent) menses, hirsutism/acne, and tendency to easy weight gain.
- It can be difficult to select out patients with PCOS from those who are merely manifesting perimenarchal adolescent physiology.
- Diet, exercise, and maintenance of healthy body weight are paramount.
- CCs often address the adolescent’s agenda (menstrual regularity, acne, and hirsutism).
- Risk of VTE on CCs is higher in teens with PCOS and obesity, but VTE is still a rare event unless there is a coexistent inherited thrombophilia.

Dysmenorrhea (Menstrual Cramps)

Primary dysmenorrhea is physiologic prostaglandin-mediated menstrual cramping. It tends to be midline and low pelvic, and sometimes radiates down legs or around to the low back. It is not usually present with the menarchal bleed. Gradually, over the months or few years postmenarche, as the HPO axis matures, cycles become ovulatory and more regular and with this comes primary dysmenorrhea of variable severity. Sometimes adolescents report that NSAIDs failed, but they were waiting too long. Other causes of menstrual cramping include (but are not limited to) endometriosis and cyclic constipation. Endometriosis most definitely does occur in adolescents and has been reviewed by several investigators recently.38–42 There can be a family history, but the most common manifestations are intractable dysmenorrhea that eventually fails to respond to usual treatment strategies (discussed later), chronic pelvic pain, or deep dyspareunia. When the teen fails to respond adequately to NSAIDs (plus or minus acetaminophen) or when the teen also needs reliable family planning, hormonal contraception is the next strategy, along with a discussion of healthy sexual choices and dual protection. See this article’s discussion of treatment options in general and Table 1.

Caution

When menarche is accompanied by severe pain, suspect a menstrual outflow obstruction. The most likely obstructive müllerian anomaly that would still allow menarchal flow is a noncommunicating uterine horn (see Fig. 3). In addition, be aware of teens who seemingly are premenarchal but have well-developed secondary sexual characteristics and are experiencing episodes of severe pelvic pain. An obstructive anomaly such as transverse vaginal septum, imperforate hymen (see Fig. 3), or vaginal agenesis (with uterine remnant) must be ruled out. For a detailed description of both obstructive and nonobstructive müllerian anomalies, consult the North American Society of Pediatric and Adolescent Gynecology (NASPAG) 2014 clinical recommendations.18,19
Refer to pediatric adolescent gynecology (or gynecology) when anything other than primary physiologic dysmenorrhea is suspected or when treatments are failing to control the menstrual pain.

Key points/pearls
- Be proactive with cramp medications. Combine acetaminophen with NSAIDs.
- Be suspicious if properly administered proactive NSAIDs (plus or minus acetaminophen) in combination with CCs fail to control dysmenorrhea.
- Consider endometriosis if there are other features of pelvic pain and dyspareunia.
- Be suspicious if there is significant pubertal progress but no menarche, especially if there is recurrent pelvic pain (müllerian anomaly).
- Be suspicious if the menarchal bleed is very painful (consider obstructive müllerian anomaly).

Inherited Bleeding Disorder

The most common inherited bleeding disorders in women include von Willebrand disease (VWD), symptomatic hemophilia (type A is factor VIII deficiency and type B is factor IX deficiency), platelet dysfunction, and other factor deficiencies (eg, VII and XI). It is estimated that up to 1 in every 5 women and girls with true menorrhagia (abnormally heavy flow) have an inherited bleeding disorder and most have VWD. Many of these bleeding diatheses have well-known inheritance patterns and ideally the diagnosis is made before menarche. However, this is not often the scenario. Menarche is often a time when the diagnosis is made after the girl has suffered psychologically, socially, and physically while trying to contend with her first menstrual cycle (or the first several). It is important to determine whether the girl has had other challenges with hemostasis, such as nose bleeds, gum bleeds, joint bleeds and bruising, excess bleeding with wisdom teeth extraction, or tonsillectomies, and this is the time to actively seek out the mother's menstrual and obstetric history and the family history of bleeding (eg, postpartum hemorrhages, anemia and heavy menses, the need for early hysterectomies). However, an absent family history does not exclude the diagnosis. For more information about abnormal menstruation caused by bleeding diatheses, the reader is referred to several outstanding reviews.2,43–52

Much effort has gone into trying to develop tools that will assist clinicians in selecting out those women and girls who warrant investigations for a bleeding disorder. These tools have included pictorial blood assessment charts (which are not always on hand and practical) and bleeding scores or questionnaires, and some have specifically examined children and teens.53–56

Key points/pearls
- Take bleeding history from teen and her family.
- Consider screening for inherited bleeding disorder if the patient reports one of the following:
 - A duration of menses greater than or equal to 7 days plus flooding or impairment of daily activities with menses
 - A history of treatment of anemia
 - A family history of a diagnosed bleeding disorder
 - A history of excessive surgical bleeding or obstetric (and gynecological) bleeding complications in teen or parent (ask specifically about tonsils/adenoids and dental extraction)
Investigations to be considered (in addition to those listed earlier)

- Peripheral blood smear
- Prothrombin time (PT), activated partial thromboplastin time (aPTT)
- International Normalized Ratio (INR) and thrombin time (TT)
- Renal and liver function tests
- ABO blood group
- VWF:Ag, VWF:RCo, FVIII*

However, there are many conditions and situational factors that can affect the test results, such as stress, acute bleeding, blood type O, and hyperthyroidism, so consultation with a hematologist is recommended to assist with making the diagnosis, interpretation of results, and/or additional testing. Be aware that many patients with an inherited bleeding disorder have normal PT, PTT, INR, and TT.

Treatment strategies for nonacute heavy menstrual flow in adolescents with an inherited bleeding disorder are identical to those described for treatment options in general and in Table 1. For example, heavy flow but migraines with focal neurologic features in a teen who has an inherited bleeding disorder but also needs reliable birth control might warrant a long-acting progestin. If intramuscular injections are used, prolonged pressure on the injection site may be needed. If an LIUS is inserted, the expulsion rate may be higher than usual. If NSAIDs are to be used for dysmenorrhea, the hematologist should know and they should be used for only a couple of days each month to avoid aggravating hemostasis with platelet dysfunction. Sometimes hematologists prescribe desmopressin acetate (DDAVP) if the teen is a DDAVP responder.

PREGNANCY

Whenever a teen presents with a change in her menses, absent or atypical, astute clinicians always take a sexual history and have a low threshold for pregnancy testing. Pregnancy may be intrauterine or ectopic and viable or nonviable.

SUMMARY

Teens present with a variety of menstrual complaints, including heavy, irregular, painful, or absent flow. Using the hypothalamic, pituitary, ovarian, and outflow tract axis as a guide, most underlying conditions are identified and can easily be managed. Sometimes reassurance is all that is necessary but treatment is indicated if/when the symptoms are causing distress or dysfunction. NSAIDs and CCs tend to be first-line modalities. Immaturity of the HPO axis, hypothalamic factors (diet, stress, and exercise), functional amenorrhea, idiopathic anovulation, and PCOS are the most common causes, but astute clinicians never overlook inherited bleeding disorders or the possibility of pregnancy.

REFERENCES

33. Dinger J. Cardiovascular and general safety of a 24-day regimen of drospirenone-containing combined oral contraceptives: final results from the international active surveillance study of women taking oral contraceptives. Contraception 2014;89:253–63.